
International Journal of Scientific & Engineering Research, Volume 2, Issue 11, November-2011 1
ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

Data Compression using Huffman based LZW
Encoding Technique

Md. Rubaiyat Hasan

 ABSTRACT

 Data compression is of interest in business data processing, both because of the cost savings it offers and because of the large
volume of data manipulated in many business applications. A method and system for transmitting a digital image (i.e., an
array of pixels) from a digital data source to a digital data receiver. More the size of the data be smaller, it provides better
transmission speed and saves time. In this communication we always want to transmit data efficiently and noise free. Both the
LZW and Huffman data compression methods are lossless in manner. These methods or some versions of them are very
common in use of compressing different types of data. Even though on average Huffman gives better compression results, it
determines the case in which the LZW performs best and when the compression efficiency gap between the LZW algorithm and
its Huffman counterpart is the largest. In the case of Hybrid compression it gives better compression ratio than in single
compression. So, at first I wanted to compress original data by Huffman Encoding Technique then by the LZW Encoding
Technique .But it did not give better compression ratio than in single LZW compression. At that time I have found that if we
compress the data by Huffman first and then by LZW all the cases it gives better compression ratio. Then it named as “Data
compression using Huffman based LZW Encoding”. Its compression ratio most of the cases above 2.55 and in some cases it
becomes above 3.25 or more. It will provide cheap, reliable and efficient system for data compression in digital communication
system.

Index Terms—Double Compression, Huffman based LZW Encoding, Data Compression, and Software Tools.

—————————— ——————————
1 INTRODUCTION

The term “Data Compression” means compresses the data
as much as possible from its original size. But in this
communication we always want to transmit data efficiently
and noise free. We try to find such data that are lossless.
Huffman and LZW both are lossless technique of data
compression. Hybrid compression is also helpful in data
compression. There are various hybrid data compressions.

A brief introduction to information theory is provided in
this chapter. The definitions and the assumptions necessary
to a comprehensive discussion and evaluation of data
compression methods are discussed. Data compression is of
interest in business data processing, both because of the
cost savings it offers and because of the large volume of
data manipulated in many business applications. The types
of local redundancy present in business data files include
runs of zeros in numeric fields and sequences of blanks in
alphanumeric fields which are present in some records and
null in others.

————————————————
Md. Rubaiyat Hasan
Bachelor in Computer Science and Engineering from Rajshahi University of
Engineering and Technology (RUET), Bangladesh in 2009,
E-mail: mdrubaiyat@yahoo.com

Run length encoding can be used to compress sequences of

zeros or blanks. Null suppression may be accomplished
through the use of presence bits. Another class of methods
exploits cases in which only a limited set of attribute values
exist. Dictionary substitution entails replacing
alphanumeric representations of information such as bank
account type, insurance policy type, sex, month, etc. by the
few bits necessary to represent the limited number of
possible attribute values.

Cormack describes a data compression system which is
designed for use with database files. The method, which is
part of IBM's "Information Management System" (IMS),
compresses individual records and is invoked each time a
record, is stored in the database file; expansion is
performed each time a record is retrieved. Since records
may be retrieved in any order, context information used by
the compression routine is limited to a single record. In
order for the routine to be applicable to any database, it
must be able to adapt to the format of the record. The fact
that database records are usually heterogeneous collections
of small fields indicates that the local properties of the data
are more important than its global characteristics.

The compression routine in IMS is a hybrid method which
attacks this local redundancy by using different coding
schemes for different types of fields. The identified field

mailto:mdrubaiyat@yahoo.com

International Journal of Scientific & Engineering Research, Volume 2, Issue 11, November-2011 2
ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

types in IMS are letters of the alphabet, numeric digits,
packed decimal digit pairs, blank, and other. When
compression begins, a default code is used to encode the
first character of the record. For each subsequent character,
the type of the previous character determines the code to be
used.
For example, if the record 01870_ABCD LMN were
encoded with the letter code as default, the leading zero
would be coded using the letter code; the 1, 8, 7, 0 and the
first blank (_) would be coded by the numeric code. The A
would be coded by the blank code; B, C, D, and the next
blank by the letter code; the next blank and the L by the
blank code; and the M and N by the letter code. Clearly,
each code must define a codeword for every character; the
letter code would assign the shortest code words to letters,
the numeric code would favor the digits, etc. In the system
Cormack describes, the types of the characters are stored in
the encode/decode data structures.

When a character c is received, the decoder checks type(c)

to detect which code table will be used in transmitting the
next character. The compression algorithm might be more
efficient if a special bit string were used to alert the receiver
to a change in code table. Particularly if fields were
reasonably long, decoding would be more rapid and the

extra bits in the transmission would not be excessive.
Cormack reports that the performance of the IMS
compression routines is very good; at least fifty sites are
currently using the system. He cites a case of a database
containing student records whose size was reduced by
42.1%, as a side effect the number of disk operations
required to load the database was reduced by 32.7%.

A variety of approaches to data compression designed with
text files in mind include use of a Dictionary either
representing all of the words in the file so that the file itself
is coded as a list of pointers to dictionary or representing
common words and word endings so that the file consists
of pointers to dictionary and encodings of the less common
words. Hand-selection of common phrases, programmed
selection of prefixes and suffixes and programmed selection
of common character pairs has also been investigated.
The remainder of the paper is organized as follows. In
Section 2, the relevant literature on data compression is
reviewed. Section 3, shows several possible ways to
parallelize the BWT algorithm. Section 4, presents the
parallel bzip2 algorithm. Section 5 gives the performance
results using the algorithm on several parallel architectures.
Section 6 concludes the paper.

1.1 Scope of Research

We know about the term compression ratio. This means as:
Compression Ratio , Cr= ((Data size of original message)/

(Data size of Encoded message))

Now-a-days, compression ratio is a great factor in
transmission of data. By this research we can have a better
solution about how to make compression ratio higher,
because data transmission mostly depends on compression
ratio.

This discussion of semantic dependent data compression
techniques represents a limited sample of a very large body
of research. These methods and others of a like nature are
interesting and of great value in their intended domains.
Their obvious drawback lies in their limited utility. It
should be noted, however, that much of the efficiency
gained through the use of semantic dependent techniques
can be achieved through more general methods, albeit to a
lesser degree. For example, the dictionary approaches can
be implemented through either Huffman coding or
Lempel-Ziv codes. Cormack's database scheme is a special
case of the codebook approach, and run length encoding is
one of the effects of Lempel-Ziv codes.

1.2 Objective

The main Objective is to provide better compression ratio.
For these here I have used Huffman compression and LZW
compression. The objective can be specified as follows:

Ø Study the different data compression techniques
Ø Implementation of the Huffman and LZW Encoding
Ø Measure the performance of Huffman and LZW by my
measuring various size of data
Ø Then measure relative improved performance in the case
of hybrid compression for both Huffman based LZW and
LZW based Huffman
Ø Provide recommendation for future aspect

2 DATA COMPRESSION TECHNIQUES

2.1 Data Compression Types

Mainly there are two different ways that data compression
algorithms can be categorized. In (table 2.1), the methods
have been classified as either lossless or lossy. These are
lossless and lossy(does loss any single data). In (table 2.2),
the methods are classified according to a fixed or variable
size of group taken from the original file and written to the
compressed file.

International Journal of Scientific & Engineering Research, Volume 2, Issue 11, November-2011 3
ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

2.1.1 Huffman Encoding

In computer science and information theory, Huffman
coding is an entropy encoding algorithm used for lossless
data compression. The term refers to the use of a variable
length code table for encoding a source symbol (such as a
character in a file) where the variable-length code table has
been derived in a particular way based on the estimated
probability of occurrence for each possible value of the
source symbol. It was developed by David A. Huffman
while he was a Ph.D. student at MIT, and published in the
1952 paper "A Method for the Construction of Minimum-
Redundancy Codes." Huffman became a member of the
MIT faculty upon graduation and was later the founding
member of the Computer Science Department at the
University of California, Santa Cruz, now a part of the
Baskin School of Engineering.

2.1.2 Huffman Encoding Algorithm

Huffman (W, n) //Here, W means weight and n is the no.
of inputs
Input: A list W of n (Positive) Weights.
Output: An Extended Binary Tree T with Weights Taken
from W that gives the minimum weighted path length.

Procedure: Create list F from singleton trees formed from

elements of W.
While (F has more than 1 element) do

Find T1, T2 in F that have minimum values associated with
their roots // T1 and T2 are sub tree
Construct new tree T by creating a new node and setting T1
and T2 as its children
Let, the sum of the values associated with the roots of T1
and T2 be associated with the root of T Add T to F

Do
Huffman-Tree stored in F

2.2.1 LZW Encoding

LZW compression is named after its developers, A. Lempel
and J. Ziv, with later modifications by Terry A. Welch. It is
the foremost technique for general purpose data
compression due to its simplicity and versatility. Typically,
you can expect LZW to compress text, executable code, and
similar data files to about one-half their original size. LZW
also performs well when presented with extremely
redundant data files, such as tabulated numbers, computer

LZW is the basis of several personal computer utilities that
claim to "double the capacity of your hard drive." If the
codeword length is not sufficiently large, Lempel-Ziv codes
may also rise slowly to reasonable efficiency, maintain
good performance briefly, and fail to make any gains once
source code, and acquired signals. Compression ratios of
5:1 are common for these cases.

2.2.2 LZW Encoding Algorithm

Step 1: At the start, the dictionary contains all
possible roots, and P is empty;
Step 2: C: = next character in the char stream;

 Step 3: Is the string P+C present in the dictionary?
 (a) if it is, P := P+C (extend P with C);

 (b) if not,
–output the code word which denotes P to the code stream;
– add the string P+C to the dictionary;
–P := C (P now contains only the character C); (c) Are there
more characters in the charstream?
–if yes, go back to step 2;
–if not:
Step 4: Output the code word which denotes P to the code
stream;
Step 5: END.

Lossless Lossy
run-length CS&Q
Huffman JPEG

delta MPEG
LZW

Table 2.1: Lossless or lossy.

Method Input output

CS&Q Fixed fixed

Huffma

n

Fixed variable

Arithmet

ic

Variable variable

run-length, LZW Variable

 fi

xed
Table 2.2: Fixed or variable group size

 for the source messages.

International Journal of Scientific & Engineering Research, Volume 2, Issue 11, November-2011 4
ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

3 RESULTS AND DISCUSSION
3.1 Result of Encoded data and compression ratio using Huffman

Table 3.1: Result of Data compression using Huffman
Encoding

From the above experiment this is found that every data
has decreased from its original size. For the case of both
MB and KB data the compression ratio is above 1.7 in
average case. There are lower and higher compression
ratios in some cases. This is the result of compression of
text file. The compressed files were in the 0, 1 binary code
formats. After that when decompressed that file it
becomes same.

3.2 Result of Encoded data and Compression ratio using LZW

No. of

Exp.

Original

Data Size

LZW Compression

Ratio(Cr)

01 4.70

MB

1.87

MB

2.51

02 2.19

MB

933

KB

2.35

03 26

KB

12

K

B

2.16

04 71.6

KB

21.9

KB

3.26

05 2.44

MB

980

KB

2.48

06 4.63

MB

1.85

MB

2.50

07 9.53

MB

3.77

MB

2.53

08 18.8

MB

7.51

MB

2.50

09 7.08

MB

2.81

MB

2.52

10 25.9

MB

10.3

MB

2.51

Table3.2: Data compression using
LZW Encoding

From the above experiment it is found that every data has
decreased from its original size. For the case of both MB
and KB data the compression ratio is above 2.5 in average
case. There are lower and higher compression ratios in
some cases. This is the result of compression of text file.
After that when decompressed that file it becomes same as
the original file. It gives better compression ratio than the
case of Huffman Encoding. It compresses a file almost 60%
and we can have only 40% size of the original file size. To
have better file size we may use LZW Encoding technique.

 3.5

 3

 2.5

 02

 1.5

 01

 0.5

 00 2 4 6 8 10 12

 3.5

 03

 2.5

 02

 1.5

 01

 0.5

 00

 1 2 3 4 5 6 7 8 9 10

Figure 3.1: Graphical view of result of Data compression
 using LZW Encoding

No.of

Experiment

Original

Data Size

Huffman Compr

ession

Ratio

(Cr)
01 4.70 MB 2.67 MB 1.7

6 02 2.19 MB 1.20 MB 1.8

2 03 20

KB

18.5 KB 1.4

0 04 71.6 KB 48

KB

1.4

9 05 2.44 MB 1.40 MB 1.7

4 06 4.63 MB 2.61 MB 1.7

7 07 9.53 MB 5.42 MB 1.7

5 08 18.8 MB 10.6 MB 1.7

7 09 7.08 MB 4.02 MB 1.7

6 10 25.9 MB 14.6 MB 1.7

7

International Journal of Scientific & Engineering Research, Volume 2, Issue 11, November-2011 5
ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

3.3 Result of Encoded data and Compression ratio using

Huffman based LZW

Table 3.3: Result of Data compression using Huffman based

 LZW Encoding

From the above experiment it is found that every data has
decreased from its original size. For the case of both MB
and KB data the compression ratio is above 1.80 in average
case. There are lower and higher compression ratios in
some cases. This is the result of compression of text file.

After that when decompressed that file it becomes same as
the original file. It gives better compression ratio than the
case of Huffman Encoding but lower compression ratio in
the case of LZW. It compresses a file almost 55% and we
can have only 45% size of the original file size. We think
that Hybrid compression gives better output but here we
find different case. So, LZW performs better than LZW
based Huffman Encoding .To have better file size we may
use LZW Encoding technique.

3.4 Result of Encoded data and Compression ratio using LZW
base Huffman

No.of

Experiment

Original

Data Size

LZW

based

Huffman

Compression

Ratio(Cr)

01 4.70

MB

2.59

MB

1.81

02 2.19

MB

1.24

MB

1.76

03 26

KB

21.1

KB

1.23

04 71.6

KB

39.1

KB

1.83

05 2.44

MB

1.32

MB

1.85

06 4.63

MB

2.54

MB

1.82

07 9.53

MB

5.30

MB

1.79

08 18.8

MB

10.5

MB

1.79

09 7.08

MB

3.93

MB

1.80

10 25.9

MB

14.4

MB

1.79

Table 3.4: Result of Data compression using LZW based

 Huffman Encoding

3.5 Result of Encoded data and Compression ratio using

Huffman based LZW

From the above experiment we find that every data has
decreased from its original size. For the case of both MB
and KB data the compression ratio is above 2.55 in
average case. There are lower and higher compression
ratios in some cases. This is the result of compression of
text file. After that when we have decompressed that
file it becomes same as the original file. It gives better
compression ratio than the case of Huffman, LZW and
LZW based Huffman all three Encoding.

It compresses a file almost 62% and we can have only

38% size of the original file size. From this experiment
we can say that Hybrid Data Compression is better than
single compression. To have better file size we may use
Huffman based LZW Encoding technique.

No. of

Experiment

Original Data

 Size

Huffman

based LZW

Compression

Ratio(Cr)

01 4.70

MB

1.83

MB

2.56

02 2.19

MB

912

KB

2.40

03 26

KB

11.5

KB

2.26

04 71.6

KB

21

KB

3.41

05 2.44

MB

959

KB

2.54

06 4.63

MB

1.82

MB

2.54

07 9.53

MB

3.69

MB

2.58

08 18.8

MB

7.35

MB

2.55

09 7.08

MB

2.75

MB

2.57

10 25.9

MB

10.1

MB

2.56

International Journal of Scientific & Engineering Research, Volume 2, Issue 11, November-2011 6
ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

04

3.5

03

2.5

 02

1.5

 01

0.5

 00 02 04 06 08 10 12

 04

 3.5

 03

 2.5

 02
 1.5

 01

 0.5

 00 01 02 03 04 05 06 07 08 09 10

Figure 3.2: Graphical view of result of Data
compression using Huffman based LZW Encoding

3.6 Comparison among relative compression ratio

Table 3.5: Result of Data compression in different cases

This is the result of relative data compression among

Huffman, LZW, LZW based Huffman and Huffman based
LZW. In all these cases of compression Huffman based LZW
performs well. It compresses a data to almost 38% or less from
its original size where the remaining three never gives such
better compressed data.

4 CONCLUSION

Data compression is a topic of much importance and many
applications. Methods of data compression have been studied
for almost four decades. This paper has provided an overview
of data compression methods of general utility. The algorithms
have been evaluated in terms of the amount of compression
they provide, algorithm efficiency, and susceptibility to error.
While algorithm efficiency and susceptibility to error are
relatively independent of the characteristics of the source
ensemble, the amount of compression achieved depends upon
the characteristics of the source to a great extent.

It does not matter how the characters are arranged. It arranged

above so that the final code tree looks nice. It is used Turbo

No. of

Exp.

Original

Data

Size

Huffman LZW LZW based

Huffman

Huffm

an

based

LZW

01 4.70 MB 2.67 MB 1.87 MB 2.59 MB 1.83

MB
02 2.19 MB 1.20 MB 933 KB 1.24 MB 912 KB

03 26 KB 18.5 KB 12 KB 21.1 KB 11.5

KB
04 71.6 KB 48 KB 21.9 KB 39.1 KB 21 KB

05 2.44 MB 1.40 MB 980 KB 1.32 MB 959 KB

06 4.63 MB 2.61 MB 1.85 MB 2.54 MB 1.82

MB
07 9.53 MB 5.42 MB 3.77 MB 5.30 MB 3.69

MB
08 18.8 MB 10.6 MB 7.51 MB 10.5 MB 7.35

MB
09 7.08 MB 4.02 MB 2.81 MB 3.93 MB 2.75

MB
10 25.9 MB 14.6 MB 10.3 MB 14.4 MB 10.1

MB

International Journal of Scientific & Engineering Research, Volume 2, Issue 11, November-2011 7
ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

C editor for coding. It does not matter how the final code
tree are labeled (with 0s and 1s).It has chosen to label the
upper branches with 0s and the lower branches with 1s.

In conclusion anybody can say that Huffman based LZW
Encoding Compresses data more than Huffman
Compression in most of the case. The Huffman based LZW
compression is better some of the cases than LZW
Compression. This is also possible to Decompress.

5 ACKNOWLEDGEMENT

 My special thanks to Prof. Md. Robiul Islam, RUET,
Bangladesh and Dr. Md. Shahid Uz Zaman for their
suggestions.

6 APPENDIX
USED TOOLS AND PROGRAMS

I have used various tools for Compression purpose. I also
used two different programs on LZW and Huffman to
fulfill my Compression purpose. These are as follows:

Ø I have used Turbo C editor for coding.
Ø It does not matter how the final code tree are labeled.
We have used 0 and 1 for code tree.
Ø I have chosen to label the upper branches with 0s and
the lower branches with 1s for Huffman.
Ø For LZW we have used 0-256 for single word. For string
or multi word we have used above the 256 numbers.
Ø I have used text files as the source file.
Ø I have compressed a text by LZW Encoding first then
we apply Huffman to the LZW Compressed data. Finally,
we obtain the double compressed data. It can be
decompressed by Huffman first and then by LZW
Decoding Technique.

7 REFERENCES

[1] Digital Image Processing (Second papers: Edition)-
2006 –Rafael C. Gonzalez and Richard E. Woods. Pages:
411, 440-442, 459
[2] Lecture 17on Data Compression: Patrick Karlsson
Patrick. karlsson@cb.uu.se

Center for Image Analysis. Uppsala University, Computer
Assisted Image Analysis May 19 2006
[3] Chesnokov Yuriy-Former Cambridge University post -
doc(http://www-ucc.ch.cam.ac.uk/research/yc274-
research.html)
currently lives in Krasnodar, Russia and doing some
contract research for third parties.
[4] Mark Nelson's "LZW Data Compression" from the
October, 1989 issue of Dr. Dobb's Journal.
[5] Huffman's original article:D.A. Huffman, "[3]" (PDF),
Proceedings of the I.R.E., September 1952, pp1098-1102
[6] Background story Profile:David A. Huffman, Scientific
American, Sept. 1991, pp. 54-58
[7] Thomas H. Cormen , Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to
http://en.wikipedia.org/wiki/Huffman_coding22-Aug-07
[8] Abramson, N. 1963. Information Theory and Coding.
McGraw-Hill, New York.
[9] Apostolico, A. and Fraenkel, A. S. 1985. Robust
Transmission of Unbounded Strings Using Fibonacci
Representations. Tech. Rep. CS85-14, Dept. of Appl. Math.,
The Weizmann Institute of Science, Sept.

[10] Elias, P. 1975. Universal Code word Sets and
Representations of the Integers. Trans. Inform.
Theory 21, 2 (Mar.), 194-203.
[11] Cappellini, V., Ed. 1985. Data Compression and Error
Control Techniques with Applications. Academic
Press, London.
[12] Connell, J. B. 1973. A Huffman-Shannon-Fano Code.
Proc. IEEE 61, 7 (July), 1046-1047.
[13] Cormack, G. V. 1985. Data Compression on a Database
System. Commun. ACM 28, 12 (Dec.), 1336-42.
[14] Cormack, G. V., and Horspool, R. N. 1984. Algorithms
for Adaptive Huffman Codes. Inform. Process. Letts. 18, 3
(Mar.),159-65.
[15] Cortesi, D. 1982. An Effective Text-Compression
Algorithm. BYTE 7, 1 (Jan.), 397-403.
[16] Cot, N. 1977. Characterization and Design of Optimal
Prefix Codes. Ph. D. dissertation, Computer Science
Dept.,StanfordUniv.,Stanford,Calif.

mailto:karlsson@cb.uu.se
http://www-ucc.ch.cam.ac.uk/research/yc274-research.html
http://www-ucc.ch.cam.ac.uk/research/yc274-research.html
http://www.dogma.net/markn/articles/lzw/lzw.htm
http://en.wikipedia.org/wiki/Huffman_coding

